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Four Galerkin finite-element methods are tested for solving the free-boundary problem that 
describes steady solidification. The formulations differ in the solution method used to account 
for the unknown shape of the melt/solid interface, in the interphase condition (either balance 
of heat flux or equilibrium of temperature) distinguished for locating the interface, and in the 
technique used for solving the systems of algebraic equations that result from the finite- 
element approximations. Methods that use the melting point isotherm to locate the melt/solid 
interface are found more accurate and efficient than formulations based on the interfacial 
energy balance. Solution by a Galerkin-Newton algorithm of the free-boundary problem 
transformed to a fixed domain is most efficient when the field problem in each phase is made 
nonlinear by including radiation from the melt and solid to the surroundings. 

1. INTRODUCTION 

Precise understanding of the physics that controls the shape of the phase boundary 
separating melt and solid during steady solidification is becoming increasingly 
important. For semiconductor crystals grown from the melt, the shape of the 
melt/solid interface influences both the density of crystallographic defects [ 1 ] and the 
uniformity of composition [2] in the crystal. The shape of this phase boundary is set 
by transport of heat and mass through melt and solid phases, across the interphase 
boundary, and to the surroundings. In general, fluid flow in the melt controls 
convective heat and mass transfer. The mathematical description of steady 
solidification is a two-phase free-boundary problem composed of a set of coupled 
partial differential equations and boundary conditions that are solved for the field 
variables (velocity, temperature, concentration, and pressure) as well as for the shape 
of the phase boundary. Nonlinearities :appear in such a solidification model from both 
the coupling between the shape of the phase boundari and the field variables and 
from nonlinear (e.g., convective) terms in the field equations and in conditions 
imposed along fixed and free boundaries. The numerical methods discussed in this 
paper are focused on efficient and accurate solution of steady solidification problems 
with both types of nonlinearities. 

Although many numerical methods have been proposed for solving two- 
dimensional moving- (time dependent) and free- (steady state) boundary problems, 
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only a few have treated models which have nonlinearities in the field equations, such 
as arise from accounting for natural convection [3-51. Most techniques [6-231 have 
been designed for Stefan-like problems where only one field variable, usually 
temperature, is present and the field equation is linear. In these algorithms the 
calculation of the temperature field and interface shape have been decoupled into 
successive steps. Once an interface shape has been assumed, either finite difference or 
finite element approximations reduce the energy equation and boundary conditions to 
a set of linear algebraic equations. The temperature field calculated as the solution to 
these equations is used to compute another approximation to the interface from one 
of the boundary conditions at the interface distinguished for this purpose. The 
iteration is repeated until it converges. Decoupling the calculation of the interface 
shape and field variables amounts to a successive approximation iteration that 
converges linearly [24]. Adding nonlinearities to the field equations complicates these 
iterations by making the equation set that describes the temperature field nonlinear 
and the solution of these equations iterative. 

An alternative to successive approximations is to iterate simultaneously for the 
interface shape and field variables. Newton’s method [24] is the most powerful 
scheme for doing this because it gives quadratic convergence. As is shown here, the 
rapid convergence of Newton’s method compared to successive approximation 
techniques makes a profound difference in the efficiency of the algoritm, especially 
when the nonlinearities in the field equations cause multiple iteration loops. Also, the 
application of Newton’s method leads to powerful techniques for computer-aided 
analysis of the sensitivity of the solution to parameters and of solution multiplicity 
[25]. To implement Newton’s method requires computing the Jacobian matrix that 
describes the sensitivity of the residuals of the energy balance and boundary 
conditions to changes in the temperature field and interface location. The sensitivity 
of the residuals to changes in the interface shape involve changes in the grid used for 
the approximation and hence in the approximation itself. 

We present four methods, each based on Galerkin finite-element analysis, for 
solving steady solidification problems. The four schemes are compared for a Stefan- 
like solidification problem presented in Section 2 where only heat transfer determines 
the shape of the phase boundary, which is assumed to be represented as a single- 
valued function of one spatial coordinate. This prototype problem arises as a model 
for the forming of thin silicon sheets by solidification of melt extruded through a die, 
a technique known as edge-defined film-fed growth [26-271. Nonlinearities in this 
model arise from the unknown location of the melt/solid interface, from latent heat 
release at the interface, and from radiation of heat from the sides of the sheet to the 
ambient. This last nonlinearity affects only the discretized field equations and is a 
simple example of the type caused by fluid flow in the melt which serves there to 
point to differences between successive approximation and Newton iteration methods. 

The finite element and finite difference methods developed previously for solving 
this type of free-boundary problem and the four new methods presented here are 
classified according to (i) the method used to account for the nonlinearity caused by 
the unknown interface, (ii) the condition, either interfacial equilibrium of temperature 
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or energy conservation, used as the distinguished boundary condition, and (iii) the 
method used to solve the set of nonlinear algebraic equations that result from the 
choices made in (i) and (ii). 

Two boundary conditions are specified at the melt/solid interface. The first forces 
both melt and solid temperatures along the phase boundary to equal the equilibrium 
melting temperature of the material; the second balances the net flux by conduction 
through the interace with the latent heat released by solidification. Although both 
interfacial conditions (along with the energy balances and other boundary conditions) 
must be satisfied simultaneously by any solution, it is convenient in constructing 
numerical methods and asymptotic solutions to classify them. We shall consider one 
condition as an interphase boundary condition for the energy balances and the second 
condition will be distinguished for determining the location of the phase boundary. 
This distinction seems arbitrary. As is shown in this paper, however, the choice of 
distinguished condition strongly influences the rate of convergence and accuracy of a 
numerical solution to a free-boundary problem. Silliman and Striven first pointed out 
this fact with respect to convergence of finite-element schemes for solving the free- 
boundary problem arising from the steady flow of a viscous liquid with a free surface 
[281. 

Methods for handling the nonlinearity caused by the free boundary are categorized 
according to whether the numerical grid (either elements of difference points) is fixed 
in space [6-141 or deforms [ 15-231 to conform with the shape of the phase 
boundary. The enthalpy method [7-81 uses a regular finite-difference grid and locates 
the melt/solid interface only to within a grid block. Calculation of accurate shapes by 
this method requires fine grids and hence is prohibitively expensive for complicated 
problems. 

More accurate approximations for interface shape are calculated with fixed grids 
when the original solidification problem is transformed so that melt and solid regions 
have fixed boundaries, of which the interface is one. The problem reduces to solving a 
coupled set of nonlinear partial differential equations, boundary conditions, and a 
distinguished condition, all written in terms of the temperature field and interface 
shape. This transformation technique was applied first by Landau [ 81 for one- 
dimensional and later by others [9-l I] to two-dimensional Stefan problems where the 
inteface shape was a function of a single spatial coordinate. The Isotherm-Migration 
method [ 12-141 is a special case of the Landau transformation where temperature is 
interchanged with a spatial variable. 

Previous applications of transformation methods [l&l l] all solve the nonlinear 
equation set by successive iteration between the interface shape and the temperature 
field. As shown in Section 3, Newton’s method is simply applied to this equation set 
because the dependence on the shape of the phase boundary is explicit in the 
transformed equations and all the terms of the Jacobian matrix are easily calculated 
in closed form. 

Solution of the free-boundary problem in the original coordinate system has the 
additional complication of requiring the genration of a new, and generally irregular, 
grid at each iteration. Meyer [ 15-181 has developed finite difference methods based 
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on the method of lines for solving free-boundary and Stefan problems with linear field 
equations. Several finite element techniques have been proposed for moving elements 
in Stefan problems [ 19-231; these are reviewed in [23]. Each of these methods 
integrates explicitly for the melt/solid interface location at each time step and avoids 
the problem of solving nonlinear algebraic equations. Finite element methods have 
not been applied previously to the steady solidification problem. 

The classification of numerical methods for solving free-boundary problems is 
summarized in Fig. 1. The four finite element methods discussed in detail in 
Sections 3 are I, V, VI, and VIII. Comment about the viability of methods III and 
VII are also made. The accuracy and efficiency of the four schemes are compared in 
Section 4 for two cases, in terms of parameters, of the model problem. In the first, the 
nonlinearities caused by radiation and latent heat are removed and a closed form 
solution is known for comparing accuracy. In the second, extreme values of the 
Stefan (latent heat) and radiation numbers are used to demonstrate the rapid 
convergence of the algorithm based on Newton’s method over wide ranges of 
parameters. 

2. MODEL SOLIDIFICATION PROBLEM 

In edge-defined film-fed growth (EFG), a sheet of melt is extruded from a die at a 
constant rate V and solidified by transferring heat from the sheet to the surroundings. 
We assume that the die, melt, and solid sheet all have the same thickness 2b and that 
the sheet is so wide that heat transfer is the same across any longitudinal section of 
melt and solid. We analyze only one slice of the sheet; see Fig. 2. 

Our heat transfer model for EFG is developed in [27] and is only presented here in 
dimensionless form. The half-thickness of the die b has been used as the characteristic 
length scale and temperature r,, of the melt exiting from the die has been used as the 
characteristic temperature scale. 

2.1 Heat Transfer Problem 

A rectangular Cartesian coordinate system (x,y) is defined with its origin at the 
center of the sheet and in the plane of the die exit. The interface between melt and 
solid is located at y = h(x) and the vector field n everywhere normal to this interface 
is 

n = (e, - e,h,)/[ 1 + hi] ‘I’, (1) 

where h, = L#z/ax and (e,, e,) are unit vectors in the x- and y-directions, respectively. 
The vectors normal to other boundaries are shown on Fig. 2. 
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FIG. 2. Model of edge-defined film-fed growth (EFG). Computational domain is marked by (\\\). 

To simplify the thermal model, we set the thermal and physical properties, i.e., 
density p, thermal conductivity k, heat capacity cp, heat transfer coefficient h, and 
emissivity a, of melt and solid equal. The dimensionless energy balances in melt 
(i = e) and solid (i = 4) are 

V . VT, - P(e, a VT,) = 0, i= E, d, O<y<L, o<x< 1. (2) 

The Peclet number Ps Vpc,b/k measures the importance of heat transfer by 
convection in the growth direction relative to conduction across the sheet. The melt 
and solid occupy regions @( and g0+ respectively, as shown in Fig. 3. 

At the phase boundary (y = h(x), 0 <x < 1) the interfacial energy balance 

n . VT, - n . VT, = PS(n . e,) (3) 

SK l/49/ I-9 
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FIG. 3. Sample finite-element discretization in original coordinate system. The melt/solid interface is 
the mesh curve denoted as the boundary ZL3,. The notation for other boundaries is also shown. 

and the conditions for thermal equilibrium 

r, (x, h(x)) = T,(x, h(x)) = T,,, (4) 

must be met. The dimensionless melting temperature is T,,, and the Stefan number is 
S = AHf/cp T,, , where AH, is the latent heat of fusion. Heat transfer from melt and 
solid to the surroundings at temperature T, is by both convection and radiation, 

-aTilk = B(T, - T,) + R(q - r”,), i=t,d, x=1, O<y<L. (5) 
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The Biot number B s M/k and radiation number R = aebTi/k (u is the 
Stefan-Boltzmann constant) measure the efficiencies of heat losses from the sheet by 
convection and radiation relative to conduction across the thickness of the sheet. 
These two dimensionless numbers control the amount of heat lost laterally from the 
sheet and hence control the curvature of the phase boundary. 

The midplane of the sheet is assumed to be a plane of reflective symmetry 

aTi/aX = 0, i=t, d, x=0, O<y<L, (6) 

and the temperatures at the die exit (v = 0) and at the end of the solid (y = L) are 
fixed at constant values, 

TAX, 0) = 1, T,(x,L)= T,, o<yg 1. (7) 

Equations (2-7) define a mathematical free-boundary problem for the temperature 
fields in melt and solid and the shape of the melt/solid interface. The equation set is 
nonlinear because of the coupling between h(x) and the temperature fields through 
boundary condition (3) and because of the quartic dependence on temperature in 
boundary condition (5) caused by radiation from the sheet. Allowing the material 
properties to differ in the melt and solid causes other nonlinearities; in this case, the 
form of energy balance (2) to be satisfied depends on the location of the phase 
boundary h(x). 

A closed-form solution of equation set (2-7) is known only when all nonlinearities 
are removed; this is the case when radiation (R = 0) and latent heat (S = 0) are 
neglected. Then the problem reduces to heat transfer in a moving sheet of a single 
material and the temperature field is calculated by separation of variables techniques 
[29]. The isotherms for this case are shown in Fig. 4 for the variables T, = T, = 0, 
L = 1, B = 1, P = 0.5, and the isotherm T,,, = 0.5 designated as the melt/solid 
interface. This case is used as an initial base for comparison of the four finite-element 
algorithms. 

I .o 

0.0 I I / 
- 1.0 - 0.5 0.0 0.5 1.0 

X COORDINATE 

FIG. 4. Isotherms for prototype solidification problem; P = 0.5, B = 1.0, and T, = 0.5. 
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2.2 Transformation to Regions with Known Boundaries 

To make explicit the nonlinearities caused by the unknown shape of the melt/solid 
interface, the free-boundary problem of Eqs. (2~(7) is mapped to the coordinate 
systems (r, n) in melt and (f, n^) in solid as shown in Fig. 5. The melt/solid interface 
has known shape in the transformed coordinate systems; melt occupies the region 
@#Kr< 1, 0 < q < L/2) and solid occupies the region ~8~ (0 < [ < 1, 
L/2 < $ < L). The relationships between the transformed coordinates and the original 
coordinates are 

melt: r-x, v = NJWx), 

solid: f-x, r^ s [ 1 - (1/2)(L - y)/(L - h(x))]L. 

(8) 

(9) 

FIG. 5. Sample finite-element mesh in transformed coordinates. 
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The transformed coordinates < and [ are identical and will be used interchangeably. 
Equations (8) and (9) define nonorthogonal coordinate systems in melt and solid. To 
preserve the gradient form of energy balances (2) and boundary conditions (3) during 
the change of coordinates, the operator V must be expressed in these coordinates. The 
base vectors associated with the transformed coordinate systems are introduced as 
(g,, g,) for the melt and (j$, 1,) for the solid. 

melt : g, = e, + (24 v/Q ey p (104 

g, = PW3/~) ey v (lob) 
solid: & = e, + 2h,( 1 - $/I,) e,,, W> 

g, = WW - @I) eye (1 lb) 

The reciprocal base vectors are (301 

melt: glre x7 (124 

g”r(Le,-2hirj x e WW, (12b) 

solid : $ s e,, WI 

g” s (Le, - 2hp(L - tj) e,)/2( 1 - h(Q). (13b) 

The gradients of temperature in melt 6, p; and solid 9, i?Y in transformed coordinates 
are simply 

(15) 

Energy balances (2) can be written in transformed coordinates by formulating the 
Laplacian 9; Pi s 6, .6, Pi using the definition of the gradient operators given 
above. This is not done here since Calerkin’s method does not require the 
computation of 9: ft. It is obvious from Eq. (14) and (15) that the energy balances 
written in transformed coordinates are nonlinear functions of the unknown shape of 
the melt/solid interface h(r). These nonlinearities are caused solely by the free- 
boundary problem and are present even when radiative heat transfer is neglected 
(R =O>. 

The relationships between the differential element of area in the original coordinate 
system dA G dx dy and the elements of area in the transformed regions are calculated 
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in terms of determinants g, and g, of the metric tensors [ 301 associated with coor- 
dinate transformations (8) and (9); 

melt : did s g;” dr dq = 2h/L d< dr/, (164 
solid: &I s g,“’ df drj = 2(1 - (h/L)) d[ dfl. (16b) 

t 
3. FINITE-ELEMENT ANALYSIS 

The Galerkin finite-element method forms the framework of the four techniques 
developed here for solving the steady solidification problem of Eqs. (2~(7). In each 
algorithm the temperature fields T,(x, y) and T,(x,y) and interface location h(x) are 
represented in expansions of finite-element basis functions and unknown coefficients 
such as 

T,(xv Y) = c a1.t @‘(xv Y), T,Cx, Y) = C ai,d@i(xT Y), 
i=l i=l 

h(X) = ~ pi Y’(X), 

Wa) 

i=l 

where N!, N,, and M are the numbers of basis functions associated with unknown 
coefficients in each expansion. Bilinear and reduced quadratic polynomials [ 3 1 ] are 
tested here as bases {@‘(x, y)} for representing temperature and the corresponding 
linear and quadratic polynomials are used for representing melt/solid interface shape 
ww. 

The coefftcients {a 1,1, CT~,~} are determined by forcing to zero the set of Galerkin 
weighted residual equations formed from energy balances (2) and the boundary 
conditions. The coefficients {pi} in the expansion for melt-solid interface shape are 
determined by satisfying the chosen distinguished condition, either (3) or (4). 

The a priori unknown shape of the phase boundary complicates the finite-element 
expansions (or any other discretization) when the original coordinate system is used. 
During numerical iteration any change in the location of the interface requires that 
the position of the quadrilateral mesh be changed (see Fig. 3) and that the finite- 
element basis be regenerated. The Isotherm method updates the mesh and basis at 
each iteration. The condition for interfacial equilibrium (4) is used as the 
distinguished condition; see Fig. 1. An alternative approach which circumvents the 
regeneration of the mesh and finite-element basis at each iteration is to solve the 
solidification problem in the transformed coordinates defined by Eqs. (8 and 9). In 
these coordinates, a fixed finite-element grid is established (see Fig. 5) and the 
nonlinear coupling between the temperature field and interface shape is set. The 
Kinematic-Isotherm, Isotherm-Newton, and Energy-Flux methods all solve problem 
(2)-(7) in transformed coordinates. As shown in Fig. 1, these methods differ in the 
choice of distinguished condition, either (3) or (4), and the iterative method used to 
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solve the system of nonlinear algebraic equations. Each finite-element algorithm is 
outlined below. 

3.1 Solution in Original Coordinates: Isotherm Method 

When the condition for interfacial equilibrium is used as the distinguished 
condition, the finite-element representations for the temperature fields are most 
conveniently combined into a single field as 

W Nd NO N, 
qx, Y) = 1 ai,j @k Y) + c Oli,j @(x, y) + C a:,( @‘(x9 Y) + C al,b@i(x9 y), 

i=l i=l i=l i=l 

where N, is the number of basis functions defined at y = 0, N( is the remaining 
number of functions defined in the melt, N, is the number of basis functions defined 
at y = L, and N, is the remaining number of functions defined in the solid. The nodes 
defining the temperature along the melt/solid interface are not separated out here, but 
are included in the set for the melt. Since the temperatures along the inlet and outlet 
boundaries are set by Eq. (7), the coefficients {all} and {a:,, ) are known. In the 
notation of Eq. (20), TJ(x, y) is equal to T,(x, y) when the point (x, y) is in the melt 
and to T, (x, y) when (x, y) is in the solid. The Galerkin weighted residual integrals of 
Eqs. (2) are combined as a single integral over the total area (~8~ + C&) of melt and 
solid and integrated by parts in the usual way to incorporate the flux boundary 
condition at the melt/solid interface. The residual equations that result are 

R!” = - 
J s 

[VT,. V@ + P(e, . 
9, VT,) @I QYI + la, 11 TJI: 112 de 

-1 @j[B(T, - T,) + R(c - P,)] de 

- I @‘[B(T, - T,) + R(c - T”,)] de = 0, 
-1.4 

j = l,..., N,, where Nt = N! + N,. The notation for boundaries displayed in Fig. 3 has 
been used and de is the increment of arc-length along each segment of boundary; 
de = [ 1 + h:] “* dx along the phase boundary and dt’ = dy along the side of the sheet. 
Boundary conditions (5) and (6) and the fact that each basis function {@j} vanishes 
on the boundaries agO and age have also been used. 

Equations (19) are a nonlinear algebraic set for the coefficients {cz~,~, CX~,~} once the 
finite-element approximations for interface shape and temperature fields (17) are 
introduced and the area integrals are computed with nine-point Gaussian quadrature. 
This set is more conveniently expressed as 

R”‘(a,, a,; pck’) = 0, (20) 
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where at = (al,f, %,I ,..., a&. ,I)~, % = (a19d9 %,o ,..., aN,a,d)T9 pck’ = dBik’, Pik)7-e, /%‘>‘. 
Equation set (20) is solved by Newton’s method. From first approximations 
(a:“, a$‘)) to the temperature fields, successive refinements are calculated as solutions 
of the following linear equations at the mth iteration 

(21) 

where the submatrices J(‘) and J(“) have components Jj$!’ = 8Ry’/aaj,, and = 
Jg’ G t3Ry’/8aj,,, respectively. The Newton iterations are continued until the largest 
change in any element of the solution vector is smaller than lo-i3. 

The temperature fields calculated as the solution of Eqs. (20) are not necessarily a 
solution of steady solidification problem (2)-(7). The latter is true only if the selected 
interface shape is the melting-point isotherm of the computed temperature 
distributions, that is, if h(x) expressed by (17b) satisfies distinguished boundary 
condition (4). The melting point isotherm is interpolated linearly from (17b) with 
Y=h(x)=CiM_IPj (k+l)~j(~). If the new coefficients {/Ij’+i)} calculated from the inter- 
polation do not agree with the original estimate {/I,!“‘} to one part in lo-i3, the entire 

GENERATE FINITE 

ELEMENT MESH 

START i-7 IN LIOUID AND SClJD 

E 
(k) FROM CURRENT$k) 

- 

-T- 1 

NO SET pik). Btk+‘) 
- - 

CHECK CONVERGENCE 

NEWTON ITERATION FOR 
TEMPERATURE FIELD 

- --1 

SOLVE LINEAR 

r-- -r --- 
I CHECK COVERGENCE; 

I NOb 

SEARCH TEMPERATURE 

FIG. 6. Flowsheet for Isotherm method. 
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sequence is repeated using the new approximation {/3,““} in the temperature field 
calculation. The Isotherm formulation is shown schematically in Fig. 6. As discussed 
in Section 4, this iteration scheme has been found to converge for a wide range of 
values of Stefan and radiation numbers and initial approximations to interface shape 
h(x). 

The formulation marked as III on Fig. 1 was also tested. For an approximate 
interface shape, temperature fields were calculated that satisfied Eqs. (2) and (4~(7). 
A new interface shape was found by solving by Newton’s method the nonlinear 
equation set resulting from the Galerkin weighted residuals found from the interfacial 
energy balance, where the temperature gradients were evaluated from the previously 
calculated temperature field. The Jacobian matrix of the interface residual equations 
was numerically singular; consequently, the iteration for the new interface location 
diverged. 

3.2 Solution in Transformed Coordinates 

When the solidification problem is cast in the new coordinates of Eqs. (8) and (9), 
no free boundary exists. In a numerical solution scheme, there is no need for updating 
the finite element mesh as is necessary in the Isotherm method. Three numerical 
algorithms, the Kinematic-Isotherm, Isotherm-Newton, and Energy-Flux methods, 
are presented here in transformed coordinates. The choice of distinguished condition 
and the technique used to solve the nonlinear equation set are shown in Fig. 1 for 
each method. 

3.2a Kinematic-Isotherm Method 

When condition (4) for the melting point isotherm is used as the distinguished 
condition, the finite-element representation for the temperature fields Tj(r, q) in 
transformed regions for melt (j = e) and solid (j = 4) are combined into a single field 
as 

and the interface shape is represented as 

WI = ,f Piw’(o 
i=l 

(22b) 

The finite-element basis functions are defined in (<, r) coordinates with respect to a 
fixed grid (cf. Fig. 5). The Galerkin equations are formed by integrating the 
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transformed energy balances over the total area &t = &( + Gd. Applying the 
transformed versions of boundary conditions (3), (5), and (6) yields 

R !k) s - 4 
I 

@‘PS dr + @jB(f! - T,) + R(f=’ - T4,)](2h/L) dq 

+ I _ @[[B(%Tm)+R(t-T,)](2/L)(LA)d$ 
asI.0 

+ -_ [~i~j.Gi~k++jPey.Vi~i]gid~drt=O, 
J 

i=t,d, j=l,..., N*. (23) 
g, 

The notation used for boundaries is shown in Fig. 5. 
Substituting Eqs. (22) into Eqs. (23) gives a set of nonlinear algebraic equations in 

terms of the coefficients {a,,(}, {a,,,}, and {pi}. The coefftcients {/I,} are determined 
by the M conditions that result from the constraints of interfacial equilibrium (4), the 
distinguished condition. The resulting set of (Nt + M) nonlinear equations are explicit 
in the unknown coefftcients and hence can be solved by any conventional method. 
We test two alternatives. The first, the Kinematic-Isotherm method, is a successive 
approximation scheme that decouples the (N, + M)-dimensional set into N,- 
dimensional set (23) for the temperature field and an auxiliary system of dimension 
M for determining interface shape. This splitting technique is akin to the Isotherm 
formulation. The second technique, the Isotherm-Newton method, solves the entire 
equation set by Newton’s method. 

In the first iteration of the Kinematic-Isotherm method, values of the coefficients 
(/I,!“‘) are assumed and Eqs. (23) are reduced to a set of nonlinear algebraic equations 
in terms of the coefficients (cz,,~}, (cz~,~}: 

RCk’(a,, a,; 9’“‘) = 0. (24) 

These equations are solved by Newton’s method. The linear equation set solved at the 
mth iteration is 

The temperature field calculated as the solution of Eqs. (24) is only a solution of 
the solidification problem if the boundary rl= L/2 is the melting point isotherm, that 
is, if transformed distinguished condition (4) is satisfied. Equation (4) is put in a new 
form by taking the derivative of the melt temperature in the direction always tangent 
to the melt/solid interface. From Eq. (4), the temperature does not vary in this 
direction. This condition is written in transformed coordinates as 

&‘k+ 1) &‘k’ 

(26) 
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FIG. 7. Flowsheet for Kinematic-Isotherm method. 

an identity when the interface between two successive iterations is identically an 
isotherm. All terms on the right-hand side of (26) are evaluated based on the previous 
approximation for /z’~‘(() and the updated interface h”+“(r) is calculated by solving 
(26) by Euler’s method. The initial condition h W+ “(0) for the integration is deter- 
mined so that the corresponding value of q (or fl) satisfies 7’,(0, v) = T,,,; this 
condition guarantees that the integration of (26) tracks the melting point isotherm. 

The sequence of temperature field and interface shape calculations is repeated until 
the largest change of any coefficient {/3jk)} for the interface is less than 10-13. The 
Kinematic-Isotherm formulation is shown schematically in Fig. 7. 

3.2b Isotherm-Newton Method 

In this algorithm the (NI + M)-dimensional equations formed from Eqs. (24) and 
distinguished condition (4) are solved by Newton’s method. The M-dimensional form 
of the condition for the melting point,is developed by equating the melt temperature 
T,(t;, L/2) to T,,, at each of the nodal points along the phase boundary (cf. Fig. 5) 

R$ $((rj,L/2)- T,=O, j = l,..., M. (27) 
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The residual equations for the energy balances are taken as functions of {pj} as well 
as of {Q} and {a,,,}, i.e., 

RLN)(at, a,; p) = RcK’(a,, a,; p). (28) 

The combined equation set (27)-(28) is partially coupled; the interface shape h(x) 
appears in each of the residual equations (28). The distinguished conditions (27), 
however, are independent of the interface location {pi}. 

At each iteration a linear system of equations is solved 

~(N’*(~+1’~~~~5:~~~~~~I!=i::3~~(N), (29) 

where lCK’ is the N,-dimensional Jacobian defined by Eq. (25) and the other 
submatrices are given by 

M;;’ s c?Rh;‘I /$lj, i=l Iv,, ,***, j = l,..., M, (304 

Ljth s aR j:? /aa, ,j, i = l,..., M, j = 1 ,..., N, , Wb) 

L$; z aRj~)/aad,j, i = l,..., M, j = l,..., N,, (3Oc) 

which are derived explicitly. The Jacobian 2“” is sparse; the (N, x N,) portion zK’ is 
tightly banded along its main diagonal. The last M columns and rows ofjCN’ are not 
banded, so y’ has the “arrowhead” structure shown in Fig. 8. For the fimte-element 
meshes considered below, the number of nonzero elements of p are evenly divided 
between the main submatrix $“’ and the auxiliary matrices gCK’, r-j”‘, and kCK’. A 
Fortran subroutine was written to perform Gaussian elimination on the system of 

FIG. 8. Structure of Jacobian matrix rN’ of Isotherm-Newton formulation. 
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equations (29) while accounting for this structure. The Newton iterations are 
continued until the largest change in any component of Ack+‘) is less than 10 -13. 
This method is shown schematically in Fig. 9. 

3.2~ Energy-Flux Method 

The finite-element representations for melt and solid temperature are best left 
separated when energy balance (3) at the interface is applied as the distinguished 
condition. In terms of the transformed coordinates, these are 
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where N; s N! - NI is the number of basis functions that are nonzero along the 
melt/solid boundary q = L/2. Isotherm condition (4) is satisfied as a boundary 
condition for any interface shape and the coefftcients {a:,, } and {a{,.} are each equal 
to T,. Expression (22b) represents h(x). 

The Galerkin equations for energy balance (2) are 

melt: R$ = - 
I & 

[ 6, @” . 6, ff + <dP(e, . 6, i;)](2h/L) dt dq 

- I @,r 
@[[B(Tit - pm) + R(c - T9](2h/L) dq = 0, 

j= l,..., N;, (32) 

- I _ @[B(t, - T,) + R(c - T3](2/L)(L - h) dq = 0, 
@I,, 

j = l,..., N;. (33) 

The notation for regions and boundaries is given in Fig. 5. 
The shape of the melt/solid interface is determined from the Galerkin residual 

equations for interfacial energy balance (3) 

ds = 0, j = l,..., M. (34) 

Equations (32~(34) together with expansions (22b) and (31) describe a system of 
(Np + Ni + M) nonlinear algebraic equations in terms of the unknowns (a, , a,, p). 
These equations are only partially coupled; the interface shape h(x) appears in each 
equation, however, Galerkin equations (32) are independent of a, and Eqs. (33) are 
independent of a,. 

An attempt was made to decouple the equation set. For an approximate interface 
shape {,&j”‘}, we solved Eqs. (32) for the temperature coefficients {ai+i} and Eqs. (33) 
for {a,,}. These temperature fields were used in the M equations of (34) to calculate 
an improved location for the phase boundary. Newton’s method was employed for 
solving all three equations sets. This iterative scheme failed. Just as in the original 
coordinate system, the Jacobian matrix associated with the residual equations of the 
interfacial energy balance was numerically singular; the corrections to the interface 
location had sinusoidal oscillations that propagated with each iteration and caused 
the calculation to diverge. These oscillations were present even when the exact (to 
machine accuracy) interface shape was used as an initial approximation. 
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Solution of the entire equation set (32)-(34) by Newton’s method was successful 
and is the basis for the Energy-Flux method. The system of linear equations solved at 
each iteration is 

pA~k+l~~(~~~ ;;; ~)(~~~~~~~I);(ij:)~R(~). 

The seven matrices appearing in the Jacobian !(F) have components 

l?$’ = aR:T//8a,,, i= 1 ,..., N;, j= l,..., N;, 

I?$’ z 8R $ /au,, , i = 1 ,..., N,’ , j = 1 ,..., N,’ , 

G;;karcj~/japj, i= 1 ,..., N: , j = I,..., M, 

G;jba~:pap~, i= 1 ,..., N,’ , j = 1 ,..., M, 

2:;) E aRj~/&2,,j, i= 1 ,..., M, j= l,..., N;, 

R$) z aRj;?/aa,J, i=l,..., il4, j= l,..., Nd, 

R+a~jfi'/ap~, i= 1 ,..., M, j= l,..., M. 

(35) 

Wa) 

W) 

(36~) 

PW 

(364 

WV 

Wg) 

Explicit formulas are derived for each of the components of f(P), which has the same 
structure as the matrix P(N) (cf. Eq. (32)). The schematic of the Energy-Flux iteration 
is identical to Fig. 9. The iterations are continued until the largest change in any 
component of the correction vector A”’ is less than IO-i3. 

4. NUMERICAL RESULTS 

Fortran programs have been written for the four formulations of the solidification 
problem detailed in the previous section. Both linear and quadratic finite-element 
representations for temperature fields and melt/solid interface shape have been tested. 
All calculations were performed in extended precision arithmetic on the IBM 370/168 
computer at the Massachusetts Institute of Technology. 

The efficiency and accuracy of the four methods were compared for the case 
(S = R = 0), where the model problem became linear and the closed-form solution 
was known, and for cases where the nonlinearities caused by latent heat release 
(S # 0) and radiation (R # 0) were significant. The tests with the linear problem 
contrasted the accuracy of the various choices of finite element basis and 
distinguished condition, and gave indications of the relative efficiency of the four 
methods. This apparently linear test problem was not linear when viewed as a free- 
boundary problem in the framework of any of the four iterative schemes; multiple 
iterations were necessary for each scheme method to converge to the solution. 
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The very nonlinear test problem substantiated the conclusions from the linear 
problem and pointed out the gain in effkiency due to the implementation of Newton’s 
method for the simultaneous calculation of the field variables and free-boundary 
shape. All convergence results compare calculations that were initiated with the 
initial interface shape h(x) = 0.5 and with linear temperature profiles satisfying 
essential conditions (7). 

4.1 Comparison to Closed-Form Solution (R = S = 0) 

The melt/solid interface shapes generates by the four finite element methods are 
compared in Table I to the interface shape interpolated from the closed form of the 
temperature field for R = 0, S = 0, and B = 1.0. Results are given for a mesh of four 
quadrilateral elements in the x- and y-directions in both melt and solid regions. The 
finite-element results never differed from the exact solution by more than two percent. 

Although the accuracy of the interface shape calculated by any of the methods was 
systematically improved by increasing the number of elements, the rate of 
improvement was found to be strongly dependent on the formulation and on the type 
of basis function employed. The change in the error in the computed interface shape 
with the characteristic size of the mesh is shown in Fig. 10 for the case B = 0.1. The 
error was measured by the norm of the difference between the coeffkients {pi} of the 
finite-element approximation and the corresponding values {/3;} interpolated from the 
exact temperature field 

II P - P’ll2 E 1 fj (Pi -Pf)” 1 1’2* 
i=l 

0.125 0 167 025 0.50 
ELEMENT LENGTH IN x DIRECTION 

(37) 

FIG. 10. Convergence of four finite-element formulations as a function of element size for prototype 
solidification problem with B = 0.1, P = 0.5, and T, = 0.5. Results are shown for quadratic and linear 
bases. 

581/49/l IO 
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Each curve in Fig. 10 was lit to the relationship 

(38) 

where h was the characteristic element size and the exponent r gave the convergence 
rate for the formulations. These values of r are shown in Fig. 10. Several charac- 
teristics of the numerical formulations were apparent. As predicted from linite- 
element theory for the solution of linear partial differential equations [3 11, the 
quadratic polynomials were more accurate than the bilinear ones for bases formed 
from the same mesh. This result was independent of which formulation was used. 

All three formulations based on melting point isotherm (4) as the distinguished 
condition had identical convergence rates. This was expected for the Kinematic- 
Isotherm and Isotherm-Newton formulations since both were based on the same set 
of residual equations. The equivalence of the interface shapes calculated by the 
Isotherm method and the two formulations in transformed coordiantes implied that 
the complications to the energy balances caused by mappings (8) and (9) did not 
reduce the accuracy of the calculated temperature fields. The values of r for bilinear 
(r = 1.5) and quadratic elements (r = 3.5) compared favorably with the values 
(bilinear r = 2, reduced quadratic I = 3) for solving linear equations [3 l] derived 
from asymptotic theories that are valid for small h. This agreement between 
calculations on relatively course grids and theory is not at all unusual for linite- 
element (or finite-difference) solution of elliptic equations with smooth solutions; for 
other examples see [31, Chap. 8; 32, Chap. 41. 

The choice of distinguished boundary condition affected the accuracy of the 
formulation. The rates of convergence for the Energy-Flux formulation (based on the 

,” 
ISOTHERM 

3 
w s 

I 
I.0 IO;“-” 

BIOT NUMBER 

FIG. 11. Solution error and execution time as a function of Biot number B for P = 0.5 and T,,, = 0.5. 
Results are for Isotherm and Isotherm-Newton formulations with a 4 x 4 mesh of elements in each 
phase and quadratic basis functions. The number of iterations required for each calculation is shown on 
the curve of execution times. For the same mesh, the errors in the solutions by the two methods are iden- 
tical, since both are based on the same set of residual equations. 
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interfacial energy balance) were more than an order lower than the rates for the three 
methods based on the condition for interfacial equilibrium as the distinguished 
condition. The explanation for this result came from the form of the two interfacial 
boundary conditions. The energy balance required finite-element approximations to 
the normal derivatives of temperature at the interface; these derivatives are less 
accurate (at least one order of h) than the temperature fields needed in the isotherm 
condition. 

The accuracy of the melt/solid interface shape computed by any of the tinite- 
element formulations decreased with increasing Biot number; as B was increased, the 
phase boundary became more curved, the lateral temperature gradients increased and 
the temperature field calculation became more inaccurate. This trend is shown in 
Fig. 11 for the Isotherm-Newton and Isotherm formations with a 4 x 4 mesh of 
elements in each phase. 

KINEMATIC-ISOTHERM 

16’50V I2 

ITERATION NUMBER 

ISOTHERM 

f6’50-2 
ITERATION NUMBER 

FIG. 12. Convergence of four formulations as a function of iteration number for B = 0.1, P = 0.5, 
and T, = 0.5. Results are for (a) linear and (b) quadratic finite-element approximations and for a 4 X 4 
mesh of elements in melt and solid. 
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The efficiency of each formulation is dependent on the choice of the iterative 
technique used to solve the set of nonlinear algebraic equations. Figures 12a and b 
show the convergence with iteration count for the four finite element approximations; 
the parameter values are the same as for Fig. 10. Convergence was measured by the 
magnitude of the largest change in the coefficients {/Ii} between two successive 
iterations, i.e., 

IIP (k+l) - fP(loo = i,lnl~M I@“’ -@I. (39) 

The Energy-Flux and Isotherm formulations, both founded on Newton’s method for 
solving the nonlinear equation set, exhibited quadratic rates of convergence (the 
number of significant digits in the approximate solution almost doubled from one 
iteration to the next), whereas both the Isotherm and Kinematic-Isotherm methods 
converged linearly. 

The overall efficiency of each method accounts for the accuracy, rate of 
convergence, and computer time required for each iteration of the scheme. In Fig. 13, 
the accuracies of the calculated interface shape 11 fl - p’ /I* are plotted against the 
amounts of computer time (in cpu seconds) required for each of the four methods. 
For bilinear basis functions, the Isotherm and Kinematic-Isotherm methods had 
similar efficiency for a specified level of accuracy; no appreciable difference in 
execution time or accuracy was found between integrating numerically kinematic 
condition (33) or interpolating isotherm (27). 

The quadratic convergence rate of the Isotherm-Newton method did not result in 
increased efficiency relative to the Isotherm and Kinematic-Isotherm formulations. 
For the Isotherm-Newton method, the large amount of execution time needed for 
inverting the matrix shown in Fig. 8 more than offset the fewer number of iterations 

IO3 I I I I I I 

;j 
ISOTHERM-NEWTON/OUADRATIC 

/ 

I I I I 
107 1~6 10-5 10-4 ~-3 IO+ IO-’ loo 

SOLUTION ERROR, ll~#ll~ -- 

FIG. 13. Execution time as a function of error in the calculated melt/solid interface shape for 
B = 0.1, P = 0.5, and T,,, = 0.5. 
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required by Newton’s iteration. The Isotherm method was more efficient than the 
Isotherm-Newton method for calculations over nearly two decades of Biot number as 
shown in Fig. 11 along with the number of iterations for each calculation. The 
thermal problem defined by residual equations (19) for a specified interface shape 
was linear when S = 0 and R = 0; here, the Isotherm algorithm calculated an 
updated temperature field in a single Newton iteration. The Isotherm-Newton method 
was expected to be more efficient when the residuals of the field equations were 
nonlinear in the field variables, as is demonstrated by the results for the nonlinear 
solidification problem. 

4.2 Results for Nonlinear Solidification Problem 

The conclusions about the relative accuracy of the four finite-element schemes that 
were reached on the basis of the linear test problem remained unaltered when the 
nonlinearities caused by latent heat release and radiation from the side were included. 
Interface shapes are given in Table II for the Isotherm, Isotherm-Newton, and 
Energy-Flux methods with quadratic basis functions and the Isotherm method with 
linear ones. The results are for three meshes and R = 0.5 and S = 1.0. Underlined are 
the number of digits that remain unchanged relative to the most refined calculation 
for each method. Again the Isotherm and Isotherm-Newton formulations gave iden- 
tical interface shapes and were more accurate than the Energy-Flux method. The 
rates of convergence of each formulation were estimated by using as the “exact” 
interface shape the result calculated with the Isotherm method for quadratic inter- 
polation and an 8 x 8 mesh of elements in each phase. The norm of the difference 
between this interface shape and those calculated with other formulations is shown in 
Fig. 14 as a function of the characteristic element size. The relative accuracy of each 
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0 0.125 025 0.375 0.5 0.625 0.75 
ELEMENT LENGTH IN X DIRECTION 

FIG. 14, Convergence of Isotherm, Isotherm-Newton, and Energy-Flux methods as a function of 
element size for B = l.O,‘R = 0.5, T,,, = 0.5, and S = 1.0. 
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FIG. 15. Convergence of Isotherm, Isotherm-Newton, and Energy-Flux formulations as a function 
of iteration number for R = 0.5, P = 0.5, S = 1.0, B = 1, T, = 0.5, T, = 0, and L = 1. Results are for a 
4 x 4 mesh of elements in each phase. 

of the methods did not change with the addition of the nonlinearities caused by latent 
heat release and radiation; compare Figs. 10 and 14. 

The convergence as a function of iteration number is shown in Fig. 15 for the 
parameter set R = 0.5 and S = 1.0. Again the methods based on Newton’s method 
converged quadratically and the Isotherm formulation converged linearly. Including 
radiation (R # 0) made residual set (19) nonlinear in the coefficients for temperature, 
hence each iteration of the Isotherm scheme required one or more Newton iterations 
for calculation of an update to the temperature field. These additional iterations 
increased the execution time of the Isotherm iteration and, as expected, shifted its 
efficiency relative to the Isotherm-Newton and Energy-Flux formulations. As shown 
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FIG. 16. Execution times as a function of error in the calculated melt/solid interface shape for the 
parameter values given in Fig. 15. 
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FIG. 17. Execution times for radiation numbers between 0.1 and 100 and for P= 0.5, S = 1.0, 
B = 1.0, T,,, = 0.5, T, = 0, and L = 1.0. Results are for a 4 x 4 mesh of elements in each phase. The 
number of iterations required for each calculation is shown above the curve. For the Isotherm method, 
the first coeffkient is the number of overall iterations and the second is the number of Newton iterations 
for temperature fields. 

in Fig. 16, the Isotherm-Newton formulation was found most efficient over a range of 
three decades of accuracy for the interface shape. The Energy-Flux method also was 
found to be competitive with the Isotherm formulation when the demands on solution 
accuracy were not stringent. The superior efficiency of the Isotherm-Newton method 
was found for the entire range of radiation numbers over which the formulations 
converged. The execution times for calculations performed with Isotherm and 
Isotherm-Newton formulations using quadratic basis functions are shown in Fig. 17. 
The number of iterations needed for each calculation is also shown; for the Isotherm 
scheme both the number of overall iterations and the total number of Newton 
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FIG. 18. Variation of melt/solid interface shape with radiation number. 
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FIG. 19. Variation of melt/solid interface shape with latent heat release as measured by the Stefan 
number S. 

iterations for the temperature field are shown. For radiation numbers between 0.1 and 
10 the number of iterations required for convergence of the Isotherm-Newton 
algorithm stayed constant. As R was increased above ten, the melt/solid interface 
moved close to y = 0 and caused large temperature gradients in the melt; interface 
shapes for R between 1 and 50 are shown in Fig. 18. Neither the Isotherm nor the 
Isotherm-Newton iterations converged for R greater than 80 and the initial approx- 
imation of a flat phase boundary. No attempt was made to employ continuation 
methods to optimize the initial approximation and extend the range of R for con- 
vergence. 

The rate of convergence of the Isotherm-Newton method was not affected by 
changes in the latent heat; for S between one and four this scheme converged 
quadratically in less than seven iterations. Interface shapes for three of these cases are 

TABLE III 

Comparison of Melt/Solid Interface Calculated by the Isotherm-Newton Method with 
R = 10, S = 4.0, B = 1.0, P = 0.5, and r,,, = 0.5 

Finite-element 
basis Mesh 

Location of melt/solid interface h(x) 

x=0 x = 0.5 x= 1.0 

Linear 4x4 0.822997 0.810185 0.428789 

8x8 0.821231 0.808595 0.387874 - - 
16 x 12 0.820717 0.808299 0.366873 __ 

Quadratic 4x4 0.820152 0.808117 0.386334 - 
8X8 0.820396 0.808305 0.365309 
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shown in Fig. 19. Increasing the amount of latent heat shifts the interface towards the 
cold end (y = 1) of the sheet and steepens the interface near the edge of the melt, thus 
causing large gradients in temperature. To better approximate these gradients, the 
quadrilateral mesh has been graded toward the interface in both melt and solid. This 
is easily done in the transformed coordinates (<, II) because the interface is the coor- 
dinate surface q = 4. Interface positions calculated with both linear and quadratic 
basis functions and a number of meshes are shown in Table III. The shapes 
calculated with the linear and quadratic approximations were within fO.OO1 for the 
finest meshes used. 

5. CONCLUSIONS 

The Galerkin finite-element methods developed here are well suited to solving 
steady solidification problems. When the problem is solved in the original coordinate 
system, the unknown shape of the melt/solid interface is easily approximated by 
isoparametric finite elements and the flux boundary conditions are incorporated as 
natural conditions for the Galerkin residual equations. When the problem is 
transformed so that the interface becomes fixed, the flux conditions and field 
equations are complicated, but remain in gradient form so that they are 
systematically handled by Galerkin’s method. 

The choices of distinguished condition, of the technique used to solve the nonlinear 
algebraic equations, and of the finite-element basis all affect the accuracy and 
efficiency of the finite-element formulation. The choice of distinguished condition is 
critical. The three formulations based on the condition for interfacial equilibrium all 
produced more accurate interface shapes than the one method (Energy-Flux) that 
used the interfacial energy balance. Other formulations (III and IV in Fig. 1) based 
on the interfacial energy balance failed to converge for the prototype problem. The 
Isotherm and Kinematic-Isotherm formulations, like previous methods, decouple the 
calculation of the temperature field and interface shape at each iteration. When the 
energy equations (or boundary conditions) are nonlinear, iterative calculation of the 
temperature field is also needed. The Isotherm-Newton and Energy-Flux methods 
couple together the residuals of the field equations and the distinguished condition 
and iterate by Newton’s method simultaneously for the interface shape and 
temperature field. Both methods converged in fewer iterations than the successive- 
approximation based formulation. When radiation and latent heat are included, the 
Isotherm-Newton formulation was most efficient because it combined the accuracy 
found in methods based on distinguishing the interfacial equilibrium condition with 
the rapid convergence of Newton’s method. The Isotherm-Newton method converged 
for larger parameter ranges (0 <R < 80, 0 < S < 4) than have been reported 
previously for any calculation of a Stefan problem. 

The formulations and the conclusions reached about choices of distinguished 
condition and iteration scheme are applicable to models of solidification that are 
much more complicated than the problem treated here. Expanding the calculation to 
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include either a detailed model of the fluid mechanics in the melt [33] or the effect of 
mass transfer of a solute on the solidification of a binary melt [34] shifts the 
efficiency further towards the IsothermNewton scheme. Both cases result in much 
larger systems of algebraic equations for the field variables, i.e., temperature, velocity, 
pressure, and concentration, so that the number of coefficients associated with the 
interface shape is small compared to the number associated with the field variables. 
In these cases the additional cost is small for solving linear equation sets with the 
“arrowhead” structure over the banded matrices arising in successive approximation 
methods. Saito and &riven [35] have reached this same conclusion for the 
calculation of a viscous flow with a meniscus by a Galerkin-Newton method. 
Although Saito and Striven formulated the Galerkin equations in the original coor- 
dinate system, the residuals and elements of the Jacobian matrix were calculated in 
the transformed coordinates that correspond to the standard isoparametric mapping 
for each element [36]. The isoparametric mapping makes explicit the dependence of 
the nodes of the mesh and the basis functions on the interface shape and leads to 
formulas for the terms involving the interface shape in the Jacobian matrix. The 
isoparametric mapping technique is a method for implementing algorithms II and IV 
of Fig. 1. 
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